Role of the Jun kinase pathway in the regulation of c-Jun expression and apoptosis in sympathetic neurons.
نویسندگان
چکیده
When deprived of nerve growth factor (NGF), developing sympathetic neurons die by apoptosis. This death is associated with an increase in the level of c-Jun protein and is blocked by expression of a c-Jun dominant negative mutant. Here we have investigated whether NGF withdrawal activates Jun kinases, a family of stress-activated protein kinases that can stimulate the transcriptional activity of c-Jun by phosphorylating serines 63 and 73 in the transactivation domain and which can activate c-jun gene expression. We found that sympathetic neurons contained high basal levels of Jun kinase activity that increased further after NGF deprivation. In contrast, p38 kinase, another stress-activated protein kinase that can also stimulate c-jun gene expression, was not activated after NGF withdrawal. Consistent with Jun kinase activation, we found using a phospho-c-Jun-specific antibody that c-Jun was phosphorylated on serine 63 after NGF withdrawal. Furthermore, expression of a constitutively active form of MEK kinase 1 (MEKK1), which strongly activates the Jun kinase pathway, increased c-Jun protein levels and c-Jun phosphorylation and induced apoptosis in the presence of NGF. This death could be prevented by co-expression of SEKAL, a dominant negative mutant of SAPK/ERK kinase 1 (SEK1), an activator of Jun kinase that is a target of MEKK1. In contrast, expression of SEKAL alone did not prevent c-Jun expression, increases in c-Jun phosphorylation, or cell death after NGF withdrawal. Thus, activation of Jun kinase and increases in c-Jun phosphorylation and c-Jun protein levels occur at the same time after NGF withdrawal, but c-Jun levels and phosphorylation are regulated by an SEK1-independent pathway.
منابع مشابه
Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes
Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...
متن کاملRole of nitric oxide and Jun N-terminal kinase in the development of dark neurons in the dorsal horn of the spinal cord following induction of inflammatory pain
Introduction: Dark neurons which their morphological characteristics are consistent with those of cells undergoing apoptosis, are generated as an acute or delayed consequence of several pathological situations. The present study was designed to evaluate whether inflammatory pain regarding the role of NO and JNK lead to the formation of dark neurons in the dorsal horn of the lumbar spinal cor...
متن کاملRole of apoptosis signal-regulating kinase in regulation of the c-Jun N-terminal kinase pathway and apoptosis in sympathetic neurons.
We have previously shown that nerve growth factor (NGF) withdrawal-induced death requires the activity of the small GTP-binding protein Cdc42 and that overexpression of an active form of Cdc42 is sufficient to mediate neuronal apoptosis via activation of the c-Jun pathway. Recently, a new mitogen-activated protein (MAP) kinase kinase kinase, apoptosis signal-regulating kinase 1 (ASK1) which act...
متن کاملRegulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage
Objective(s): AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI). Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subject...
متن کاملInterplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy
Objective(s): The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 5 شماره
صفحات -
تاریخ انتشار 1998